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We discuss the question of determining the entropy given the phase space 
trajectory which describes the detailed history of a many-body system over a 
period of observation. Our viewpoint is that the determination of entropy, as 
well as all other thermodynamic properties, should require no concepts or 
information other than those given and defined by the trajectory. The counting 
of coincidence (or repetition) of states along the trajectory is presented as a way 
to determine entropy given the trajectory. An illustrative program based on the 
kinetic Ising model is described in detail. 
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1, I N T R O D U C T I O N  

T h e r m o d y n a m i c a l  proper t ies  are  mac roscop ic  proper t ies  of a large system 
in equi l ibr ium.  These  proper t ies  are  observed  over a pe r iod  of t ime long 
c o m p a r e d  to the character is t ic  microscopic  t ime scale, i.e., the re laxa t ion  
time. The  size of the system is large c o m p a r e d  to the character is t ic  
mic roscop ic  length scale, the corre la t ion  length. In  pr inciple ,  at  least,  if we 
know the comple te  da t a  of the mo t ion  of all  the par t ic les  in the system over  
the pe r iod  of obse rva t ion  t ime, i.e., the de ta i led  history,  we should  be  able  
to know all there  is to know a b o u t  the sys tem over tha t  per iod.  If over  this 
pe r iod  of t ime the sys tem exhibi ts  the rmal  equi l ib r ium 2 then all  the the rmo-  
d y n a m i c  proper t ies  for tha t  equi l ib r ium state can  be  ca lcu la ted  f rom the 
de ta i led  history.  W e  shall  refer  to this view as the mechan ica l  view. 

Entropy. is one of the t h e r m o d y n a m i c  propert ies .  A c c o r d i n g  to the 

i Department of Physics and Institute for Pure and Applied Physical Sciences, University of 
California, San Diego, La Jolla, California 92093. 

2 We define equilibrium by observed properties. A system is in equilibrium as observed over a 
given period of time if macroscopic properties are insensitive to the length of the period 
(within a range of the lengths). This is not meant to be a precise definition. Other 
qualifications must be added when necessary. 
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mechanical view it can also be determined from data of motion. It too 
reflects something about the history of the system. This mechanical view of 
entropy is the topic of discussion here. 3 

In the terminology of mechanics, the detailed history is described by a 
trajectory in the phase space. Phase space is the set of all possible states of 
the system. The trajectory is the set of states actually occurring during the 
time of observation. We shall limit our discussion to classical systems. 

According to our mechanical view the trajectory is sufficient to deter- 
mine the entropy. This view is quite different from the traditional formula- 
tion based on the Gibbs ensemble which is the mental construction of an 
infinite number of systems identical to the system of interest. Thermody- 
namic properties including entropy are regarded as properties of the 
ensemble in this formulation. Of course there is the whole subject of 
Ergodic theory which attempts to justify the ensemble formulation in terms 
of mechanical laws. We shall not attempt to comment on the Ergodic 
theory here. 4 

In this paper we are not concerned with how the trajectory is gener- 
ated from the equations of mo-tion based on the interaction between 
particles in the system and in the reservoir. We ask only how entropy is 
related to the already generated trajectory. 

Many quantities such as the energy, the magnetization, and the various 
correlation functions are easily determined from the trajectory as time- 
averaged quantities. Entropy, however, is very different. It is simply defined 
in the ensemble formulation; but from the mechanical view, the determina- 
tion is difficult. Since, as we shall argue, the mechanical view might provide 
a better conceptual foundation for statistical mechanics, the first task we 
face is to show that there exists some definite, procedures to calculate the 
entropy from the trajectory. We present here the method of coincidence 
counting as such a procedure. There are most likely other procedures for 
the same purpose. The coincidence counting serves as a concrete example 
showing that such procedures exist and puts the mechanical view of 
entropy on firm ground. 

The famous Boltzmann formula for the entropy 5 

S = l n F ( E )  (1.1) 

is the foundation of statistical mechanics. Here E is the total energy of the 
system. F(E)  is the number of states with the energy E. It is the volume of 
a region f~ in the phase space. In Section 2 we discuss the basic ideas 
involved in counting coincidence along the trajectory for the determination 

3 A brief summary of the discussion has been reported by the author elsewhere (unpublished 
works). 

4 For an introduction to more recent developments, see, for example, Ref. 1. 
5 The Boltzmann constant is chosen to be unity. 
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of the entropy. In Section 3 an illustrative program is presented showing 
how the ideas are carried out numerically. A kinetic Ising model is used for 
simplicity and for definiteness. The main result of this paper is simply an 
explicit demonstration of how, using the trajectory alone, to define a and 
measure r(E). 

Having presented an example of determining entropy from the trajec- 
tory, we then argue in Section 4 why the mechanical view is more 
preferable than the ensemble view. The major weakness of the ensemble 
formulation is its ambiguity in defining the ensemble when metastability is 
involved. Comparisons between the mechanical view and the ensemble 
view are made. In Section 5 we discuss the thermodynamical measurement 
of entropy, paying special attention to the third law of thermodynamics. 
Further discussion is given in Section 6. 

We realize that there is a diverse range of different interpretations of 
the ensemble and other views. Some readers may find our mechanical view 
controversial and unproven. Indeed, our arguments here are not rigorous. 
Our numerical demonstration supplies only an evidence, not an exhaustive 
study. We hope that it will stimulate more rigorous work. On the other 
hand, some readers may regard the mechanical view as a truism. Some may 
even regard our discussion as merely semantic. To these readers, this paper 
can be taken as an introduction to a numerical technique of determining 
the entropy. We believe that this technique is potentially useful especially in 
studying random systems. 

2. BASIC IDEAS 

2.1. Coincidence and the Size of a Region 

The basic idea of using coincidence counting to calculate entropy is 
extremely simple. Suppose that the trajectory is a set of n points randomly 
distributed in a region of F positions. Even if n is much smaller than F, 
there is a nonzero chance for coincidence, i.e., some positions will get more 
than one point. Since the probability for a point to fall in any given 
position is l / F ,  the number of coincidences is easily estimated: 

N c --  n ( n  - 1)/2 • 1 / r  (2.1) 

Let us define R to be the coincidence rate which is the probability of 
finding a coincidence per trial. There are n ( n  - 1)/2 trials; therefore, 

R = 1 /F  (2.2) 

F = U , / U  c 

N t = n ( n - 1 ) / 2  

s = i n ( l / R )  (2.3) 
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Knowing n and N c one can calculate I'. The advantage of this way of 
calculating F is that it is very straightforward. No consideration of the 
"shape" or other geometrical properties of the region is necessary. How- 
ever, there are many problems in applying this idea to the trajectory of 
interest. The most serious problem is already evident from (2.1). In order to 
get a good estimate of F we need to have Nc greater than 1, i.e., 

n ~>~- (2.4) 

The number of states must be very large because we need to deal with 
extremely large F. We now discuss this problem in more detail. 

2.2. Statistical Independence 

As is well known, over a reasonable period of time ~- the trajectory by 
no means passes through all F states. For a many-particle system, the 
number of states which the trajectory actually passes through is roughly 

n ~  N (6S / ' r )  (2.5) 

where N is the number of degrees of freedom of the system and ~- is the 
time between two changes for each variable. However, I" is of the order of 
the exponential of N 

r = e s (2.6) 

S a N  

Therefore, if N is large the criterion (2.4) cannot be met for any reasonable 
time ~'. 

This difficulty is not as serious as it appears. The exponential depen- 
dence of I" on N only reflects the statistical independence of subsystems, 
i.e., the fact that a large system is made up of approximately independent 
subsystems. The total entropy is the sum of the entropies of the subsystems. 
The number of subsystems is proportional to N and that is why the total 
entropy is proportional to N. 

The coincidence rate for the combined system of two independent 
subsystems A and B is just the product R A R e which is the probability of 
finding a coincidence for A and one for B simultaneously. Thus, we have 

SA + ,  = I n ( 1 /  RAR , ) 

= S A + S .  (2.7)  

This shows that the measurement of entropy by coincidence is consistent 
with the additive property of entropy for independent systems. For large 
systems, we can therefore write total entropy as 

S = ~ S A + ~ SA.  (2.8) 
A A,B  
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where S A is the entropy for the subsystem A. We expect some correlation 
between neighboring subsystems. The SAB terms are the corrections due to 
such correIations. The correction term SA8 can be calculated by calculating 
the entropy for the combined system A + B and 

SAB = S A +  ~ -- S A - S B (2.9) 

One has to choose the subsystems in such a way that they are large enough 
to be approximately independent. Of course we would like to have these 
subsystems be small so that the entropies can be determined by coincidence 
counting. 

At this point we emphasize that the physics of a many-body system 
rests on the correlation among a relatively small number of dynamical 
variables, i.e., correlations within a subsystem, and the combinations of 
approximately independent subsystems. Once the properties of the subsys- 
tems are known, the extrapolation to a larger system (the thermodynamic 
limit) is relatively simple when statistical independence holds. This is the 
basic reason why it is possible to calculate thermodynamic properties by 
numerical simulations which have so far been limited to model systems of 
less than a few thousand particles or spins. Very often model systems of 
much smaller sizes can already adequately give accurate descriptions of 
thermodynamic properties. Correlations in many systems of interest extend 
not much more than ten particles or spins. Statistical independence is 
already evident before the sizes get to about 100. Generally if the size is 
sufficient to account for the correlations, further increase in size would 
simply reflect only the statistical independence property. Of course, the 
minimum size required would depend on the particular problem of interest. 
When there are long-range correlations such as those occurring near a 
critical point, direct simulation would require sizes that are too large for 
today's computers. However, special techniques such as renormalization 
group can be combined to extract certain information. 

2.3. Relaxation Time 

In general the states Jn a trajectory are not quite randomly distributed. 
Each state is correlated to other states which occur within a relaxation time. 
The statistical independence property discussed above implies that fluctua- 
tions separated by large distances in a large system are uncorrelated. A 
system in equilibrium also has the property that fluctuations separated by 
large times are uncorrelated. Thermodynamic properties are obtained by 
observations over a period much longer than the relaxation time. The 
length of the relaxation time again depends on the particular system of 
interest. Many model systems studied in the numerical simulation literature 
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typically have a relaxation time of several flips per spin or a few moves per 
particle. Again, there are interesting systems with long relaxation times such 
as those near critical points. 

In order to use coincidence counting to calculate entropy via Eqs. 
(2.1)-(2.3) the set of n states must be randomly distributed. Therefore, in 
calculating the coincidence rate we must collect coincidences between 
states which occur far apart in time, i.e., farther than a relaxation time. 

2.4. Nonuniform Probability Distribution 

The assumption that we can sample from the trajectory a set of states 
which are randomly distributed, i.e., distributed with uniform probability, 
over r positions is crucial in order to define F by the trajectory. We now 
generalize the above results to cover cases where the probability distribu- 
tion is not entirely uniform. 

We separate the states into groups labeled by X. Let ~-x be the total 
time which the trajectory spends in states of the group ~ and 

ex = ~-~/~- (2.10) 

be defined as the probability of finding a group-~ state. ~" is the total time 
duration of the trajectory. Now suppose that uniform probability can be 
assumed for states in each group. Let the number of trials done in each 
group be Ntx and the coincidence count be Ncx. The generalization of (2.3) 
is then the average over ~: 

S = ~ e ~ l n ( l / R ~ )  (2.11) 

where R x is the probability of finding a state along the trajectory to 
coincide with a given state in the group X. This coincidence rate is 

R x = Px/Fx (2.12) 

since the probability that a trial state be picked in the group X is Px. If there 
are F x positions in the X phase space, the coincidence probability is clearly 
given by (2.12). Thus, we have 

s = Z e ln(rx//'x) 

r a = N , x / N c x  (2.13) 

The separation into groups depends on the particular problem of interest. 
For example, the total energy is not fixed if the system is in contact with an 
energy reservoir. Assuming uniform probability for each energy interval, 
we may choose ~ to label the energy intervals. 
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3. ILLUSTRATIVE PROGRAM 

The coincidence counting program is a program to calculate entropy 
given the trajectory for the system of interest. For the purpose of illustrat- 
ing basic ideas we study the kinetic Ising model whose trajectory is easy to 
analyze on a computer. We actually need two programs. First a simulation 
program which generates the trajectory and second the counting program 
which calculates the entropy given the trajectory as the input. The program 
of interest here is the second program. The first is just a standard simula- 
tion program, but the second program cannot be designed independent of 
the first. We shall discuss the model and its simulation first. 

3.1. The Kinetic Ising Model 

The state of the kinetic Ising system is specified by N spins, s~, 
s 2 . . . . .  s N. Each s i can assume two values, _+ 1. The spins flip according to 
certain dynamical laws which we specify as follows. Given a state we define 
the flip probability per unit time W,. for each spin 

exp( - s i h i / T )  
W i =  c o s h ( h i / r )  (3.1) 

Here T is the temperature of the system and 

hi = E Jgsj (3.2) 
J 

is the effective field seen by the ith spin and J/j is the coupling constant for 
the interaction between spins i andj .  The model is now completely defined. 
The trajectory generated by (3.1) will contain all information concerning 
the system in contact with a reservoir of temperature T. Given the state at 
time t the probability that no spin has flipped by the time t' later is 
e x p ( -  f~t') where 

a = ~ W~ (3.3) 
i 

is the probability per unit time that one of the spins flips. Therefore the 
probability that nothing happens during the period t' and then one spin 
flips t' in the subsequent interval dt' is 

e - at'fl dt' (3.4) 

The probability that the spin which flips is s i is 

~ / a  (3.5) 

Therefore, the generation of the trajectory has three steps. 
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(1) Given the state at t, compute W i and f~ according to (3.1), (3.2), 
and (3.3). 

(2) Generate two numbers x a n d y  by a generator of random numbers 
uniformly distributed between zero and 1 and set 

t ' =  ( - l n x ) / a  (3.6) 

and add t' to t. 
(3) Divide the interval (0, 1) into N portions of lengths given by (3.5). 

If the number y generated above falls in the j th  portion, then change ~ to 
- s j .  Go to step 1. 

These three steps faithfully generate the trajectory according to the 
model. We now proceed to discuss various aspects of the counting program. 

3.2. The Counting ProgrammMemory and Comparison 

This program is to compare the n states of the trajectory generated 
above and ~o see if some of the states coincide. Each state is a configura- 
tion of N spins. We essentially need to make about n 2 / 2  pairwise compari- 
sons. The task is to memorize n configurations and then compare them. We 
have not searched for the latest art of accomplishing such a task although 
very likely ingenious methods already exist in computer science literature. 
Here we shall discuss only a simple program with very limited efficiency 
and generality. It is catered to the kinetic Ising model discussed above. 

Instead of memorizing all states in the trajectory, we keep in the 
memory the labels of spins i 1, i 2 . . . . .  i n which are flipped sequentially. To 
compare two states we calculate the difference between the two states. The 
difference is defined as the difference in the number of spins between the 
two configurations. It can be calculated from the flips which happen 
between the two states. For example, to compare the state before i 2 and the 
state after i]0 we count the number of spins in the set i 2 . . . . .  i i o  which 
were flipped an odd number of times (those flipped an even number of 
times are the same as not flipped at all). This number is the difference 
between these two states. If the difference is zero, we have a coincidence. In 
this manner the program calculates the differences between the two states 
of pairs of states sampled along the trajectory, As stressed in the previous 
section, each pair of states sampled must be well separated in time. One has 
to first estimate the relaxation time and then make the separations longer 
than it is. 

3.3. Energy and Cross Section 

Because of the contact to an energy reservoir the trajectory goes 
through states of different energies and we need to calculate I ' (E)  for all E 
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with an appreciable probabil i ty P ( E ) .  The entropy is then calculated via 
(2.13), 

s = E e ( e ) l n [ r ( e ) / e ( e ) l  (3.7) 
E 

The probabil i ty P ( E )  is readily available f rom the simulation program. 

e ( e )  = ~ ( e ) / ~ -  (3.8) 

where ~-(E) is the total time spent in states with energy E and  ~- is the total 
time of the trajectory. Thus, in addit ion to the labels of the flipped spins the 
energies of all the states in the trajectory are memorized also. The coinci- 
dences for each energy level are recorded and  F ( E )  computed  separately. 

The cross section V s of a state s is defined as the total number  of states 
having the same energy as s bu t  differs f rom s by no more  than rn spins. 
The  number  m is chosen to be a small number  like 0, 1, or 2 so that the 
cross sections are easily computed  in simulation programs.  The purpose of 
introducing the cross sections is to enhance the coincidence counts. Given a 
state s, if another  state s '  differs f rom s by  no more  than m spins, then we 
record a coincidence count.  In  other words, if s '  is within the cross section 
of s, we count  it. (If m = 0, then s and s' must  be the same state to be 
counted  as a coincidence.) In  comput ing  the coincidence rate, we have to 
appropriately divide the coincidence counts by a sample number  weighted 
by  the Vs. The cross sections of all states in the trajectory are calculated 
and  memorized along with the energies and the labels of flipped spins. 
Noth ing  else needs to be memorized f rom the simulation program. 

3.4.  E x a m p l e s  of C a l c u l a t i o n ,  Es t imate  of L imi ta t ion  

At this primitive stage of development,  an explicit calculation is most  
illustrative. We  have appl ied the above  descr ibed p rog ram to one- 
dimensional  kinetic Ising models with nearest neighbor  interactions. We 
describe first the case of a uni form model  of 12 spins. 

Table I shows the results f rom a trajectory of 2000 flips. The "number  
of trials" listed are weighted by the cross sections V s as described in Section 

T a b l e  I. 

Excitation 
energy 

Coincidence Counting for a Uniform Chain of 12 Spins a 

Number Coincidence 
of trials counts .F(E) P(E) 

0 2,680 1,334 1.99 (2) 0.515 (0.42) 
4 2,845,392 22,440 126.8 (132) 0.425 (0.51) 
8 369,635 377 980.5 (990) 0.059 (0.07) 

12 69 0 (1848) 0.001 (0.002) 

a Nearest-neighbor interaction J = 1, periodic boundary condition. V s calculated with 
m = 2. 2000 flips at T = 1. Measured entropy S = 3.7. 
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3.3. The two states of each trial are further apart than 60 flips. The number 
of trials divided by the coincidence count gives F(E).  These F(E) 's  are the 
output of the coincidence counting program. For this model, F(E)  can be 
calculated analytically quite easily. The two ground states are those with all 
spins parallel. The excited states are those with even numbers of "kinks" (or 
domain walls) present. Note that the periodic boundary condition is im- 
posed. The analytic results are given in Table I in parentheses. We see that 
the agreement is very good except for E = 12 where there is no coincidence 
recorded. 

Using F(E), we can calculate the entropy via (3.7) and obtain S = 3.7. 
This is quite a bit lower than the value 4.1 calculated analytically. This 
discrepancy is due to the lack of good data for P(E) ,  which needs a longer 
time for the simulation program; 2000 flips are too short. It happens that 
E = 4 gives the major contribution to S and P ( E )  for this energy is off by 
10%. Note that as far as the coincidence program is concerned, 2000 flips 
already give very good lnF(E) .  For E = 12, where the coincidence count- 
ing fails, the contribution to entropy is about 0.03. Thus, disregarding 
errors of the simulation program, we can say that the error due to the 
coincidence counting program at 2000 flips is about 2% for this particular 
calculation. The same conclusion is observed for other temperatures tested. 

Since we will eventually be interested in applying the counting pro- 
gram to random systems, we test the program on a nonuniform Ising chain. 
For nonuniform models, the energy levels are often more spread out. They 
are more difficult to evaluate analytically. 

Table II summarizes the results for the more complicated case of a 
nonuniform model. We arbitrarily choose the interactions of a 16-spin 
system as 

Ji,i+l = 1 ,4 ,4 ,7 ,7 ,4 ,4 ,2 ,2 ,3 ,3 ,6 ,6 ,2 ,2  (3.9) 

for i = 1, 2 . . . . .  15, respectively. The average and the rms of the J's  are, 
respectively, 

J = 3.56 (3.10) 
AJ = 2.03 

The usual canonical calculation gives 

15 

Scano n = ~ Sl(Ji,i+,) + l n 2  
i=1 (3.11) 

2 J / T  + ln(1 + e - z l /T )  
S I ( J )  =- e 2s/r + 1 

The entropy is again calculated via (3.7). The data of Table II give S = 6.3. 
For the energies with zero coincidence count, a lower limit of F(E)  was 
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Table II. Coincidence Counting for a Nonuniform Chain of 16 Spins" 

Excitation Number  of Coincidence 
energy trials counts F(E)  P ( E )  

231 

0 108 48 2.25 0.0771 
2 36 18 2 0.0463 
4 1,116 116 9.6 0.1094 
6 1,592 115 13.8 0.0970 
8 1,486 54 27.5 0.1008 

10 4,215 75 56.2 0.1146 

12 4,120 41 I00 0.1003 
14 3,023 32 95 0.0793 
16 4,459 34 131 0.0659 
18 3,038 18 169 0.0408 
20 1,960 14 140 0.0361 

22 2,343 5 469 0.0392 
24 1,550 4 388 0.0268 
26 569 4 142 0.0188 
28 281 1 281 0.0139 

30 351 0 351 b 0.0132 

32 87 0 

34 32 0 

36 !22 0 

38 13 0 
40 0 0 

a Vs calculated with m = 2. S = 6.3. 1000 flips 
b Low estimate. 

at T = 3.5. 

87 b 0.0068 

32 b 0.0066 

122 b 0.0037 

13 b 0.0035 
0.0003 

estimated by simply taking F(E)  to be the number of trials. These energies 
give 5% of the entropy. Note that the statistical error is already significant 
at the energy 20, where the coincidence count is very low. The value of 
P(E) at this energy gives a rough estimate of the overall statistical error, 
about 5%. At lower temperatures the error is lower because of fewer levels 
and higher coincidence counts. The error is higher at higher temperatures. 
Equation (3.11) gives S . . . . .  = 6.1. Agreement within 5% between the mea- 
sured entropy and Scano n is also found at other temperatures tested, except 
for very low temperature (T  = 1.5), at which the measured value of entropy 
is significantly lower than S . . . . .  and depending on how the system was 
cooled down. This discrepancy is a result of metastability (see Section 4). 

The above example shows that for n = 1000 an entropy of 6 can be 
measured within 5%. Clearly, 1000 is a rather small value for n. The usual 
simulation programs run m u c h  longer. Let us estimate roughly the limita- 
tion of the counting program, in general, for a given n. Suppose that the n 
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states of the trajectory are divided into k groups of states. States in the 
same group have approximately the same energy. Each group thus has 
~n/k states and gives coincidence counts at that energy 

n )2 V 
(3.12) 

where V is a typical value of Vs. The larger N c, the more accurate the 
results. Suppose that we demand N c ~> 25, then the maximum measurable 
entropy is 

V 

One should make the energy intervals large to increase the size of the 
groups in order to decrease k and increase V. However, the intervals must 
be smaller than T so that a randomly distributed set of states can be chosen 
in each group. The value of V can be increased by making m larger, 
namely, by allowing a larger difference in comparing states in counting 
coincidence. For systems with simple structures of energy levels (uniform 
systems) the cross sections V are large ( V ~  10 in the first example), but for 
nonuniform systems (in the second example above V ~ I ) ,  they are rela- 
tively small. Suppose that V can be made large enough so that the first 
logarithm of (3.13) is unimportant. Then the crucial number is n, the 
number of states in the trajectory. For n ~  10 a, (3.13) gives S ~ 2 3 .  Clearly, 
even if we make n much larger, the maximum measurable S would not be 
much greater simply because of the logarithmic dependence on n. If the 
entropy per spin is 0.5, the counting program can cover about 40 spins. It 
can cover more at lower temperatures and fewer at higher temperatures. 
Therefore, to measure the entropy of a large system, the subdivision of the 
system into approximately statistical independent subsystems smaller than 
40 spins is crucial. The application of the counting program is therefore 
limited to systems for which such a subdivision is possible. This limitation 
is not serious for many models of interest. To extend the range of applica- 
tion, one needs to improve the choice of dynamic variables so that 
correlations are more efficiently represented (e.g., using normal coordinates 
in vibrational problems). This improvement seems to be the most impor- 
tant, although there are clearly many other aspects of the program which 
can be improved. 

4. COMPARISON TO THE ENSEMBLE VIEW 

We have presented above a definite procedure which determines the 
entropy given the trajectory. This is a procedure of direct measurement. We 
now proceed to examine to what extent this measured entropy would 
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coincide with the entropy defined via the traditional Gibbs ensemble and 
in what ways mechanical views differ conceptually from the ensemble 
formulation. Let us review briefly some of the features of the ensemble 
formulation. 

4.1. The Ensemble Formulation 

The traditional formulation of statistical mechanics has been in terms 
of the Gibbs ensemble. 6 In this formulation the calculation of thermody- 
namic properties of a given system requires the mental construction of an 
ensemble. The ensemble is an infinite number of systems identical to the 
system of interest. The states of these systems thus form a "cloud" in the 
phase space. Assuming that the cloud spreads uniformly in an allowed 
region a in phase space, the equilibrium properties are then calculated as 
averages taken over the ensemble. The entropy is simply given by the 
number of states in the allowed region by (1.1). From this ensemble 
formulation, equilibrium properties including entropy are conceptually 
regarded as properties of the ensemble of systems, not the properties of a 
single system. There is no longer any need to consider the actual trajectory 
of the system of interest. In fact, many theorists today would regard the 
ensemble as the conceptual, as well as the mathematical, foundation of the 
physics of many-particle systems. 

An essential step in the ensemble formulation is the choice of the 
ensemble. In general, the ensemble is fixed by the assumption of the 
uniform distribution over the allowed region in phase space (from which 
the canonical and grand canonical ensembles can be derived). Although the 
ensemble formulation does not give a precise rule of defining the allowed 
region, there has been little difficulty in choosing the right one. For most 
cases, the allowed region can be defined by the consideration of the particle 
number and other conservation laws and the walls containing the system. 
For decades the success of the ensemble has been overwhelming. However, 
as more,and more study is done on metastable systems, one begins to 
realize the ambiguity of the ensemble formulation. Now we turn to the 
subject of metastability. 

4.2. Metastable Systems 

Metastable means stable for a short time and unstable for a long time 
of observation. Strictly speaking, all the real systems which we regard as in 

6 For a detailed and eloquent presentation of the ensemble viewpoint, see Ref. 2. 
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equilibrium are metastable. Any solid under shear or tension is metastable. 
The very container which helps us define an "isolated" system is metasta- 
ble. Some metastable states last very long and some quite short. As long as 
the period of observation is short enough, metastabte systems have very 
well-defined thermodynamic properties. 

From the mechanical view, the qualitative picture of metastability is 
very simple. The trajectory over a limited period of time is restricted to a 
certain region of phase space but it would eventually go beyond this region 
if a much longer period of time is allowed. The very slow rate of transition 
out of the region may be due to high energy barriers surrounding the region 
or due to some other reasons. 

It seems clear that time is a crucial consideration. Therefore a formula- 
tion of statistical mechanics which excludes time from its conceptual 
foundation is expected to have serious difficulties. The ensemble formula- 
tion does not take time into consideration. However, over the years the 
practitioners who apply it to physical problems always have, in fact, 
considered the time element. Most often the consideration required is 
minimal. The working rule is simple. Dynamical variables which do not 
change much over the observation period are considered fixed. The sum 
over allowed region is the sum over variables which do change during the 
period. A classic example is the hydrogen gas. The transition between the 
triplet nuclear spin state of H 2 and the singlet state is so slow (in the 
absence of a catalyst) that over the usual period of observation in a 
laboratory virtually no such transition occurs]  Thus the populations of the 
triplet states and the singlet states must be considered as fixed conserved 
quantities when the ensemble formulation is applied. 

This simple rule may look trivial and indeed has been taken for 
granted. Nevertheless, it does show that at least some consideration of how 
the actual trajectory spends its time is necessary. When the mechanism 
responsible for metastability is more complicated, it is no longer easy to 
define the allowed region. Research on systems with quenched random 
impurities and glassy systems has shown that metastability can result from 
rather complicated energy barriers in phase space. The only concrete 
concept one can hold on to seems to be the trajectory. 

The conclusion is then that the only secure way to obtain the correct 
definition of the allowed region is through the examination of the trajec- 
tory. Therefore it seems clear that although the ensemble can very often 
serve as a convenient formal concept it cannot be regarded as a fundamen- 
tal physical concept. 

7 Early workers got wrong results by applying the canonical ensemble without realizing the 
smallness of the transition rate. For a discussion, see, for example, Ref. 3. 
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4.3. StaUstical Assumptions 

In principle we could define the entropy directly in terms of the 
coincidence counting without ever mentioning any region in the phase 
space. However, at this stage of development it is intuitively more transpar- 
ent to look upon the coincidence counting program as a means of measur- 
ing the size of the phase space region which the trajectory explores. In this 
way a comparison to the ensemble view is made very easy. 

As emphasized in Section 2, a crucial assumption which allows us to 
translate coincidence counts into the size of the explored region is that 
correlation between states far apart in time shall vanish. This assumption 
allows us to get a sample of points along the trajectory which are randomly 
distributed. Effectively this means uniform distribution of probability in a 
region of phase space explored by a trajectory. This assumption is the same 
as the uniform probability assumption used in the ensemble formulation. 
The only new ingredient which the mechanical view adds is that the 
trajectory alone defines the region over which the probability is assumed to 
be uniformly distributed. 

In Section 2, we emphasized the necessity of statistical independence 
among subsystems. This assumption is also necessary for the ensemble 
formulation to work. 

These statistical assumptions, i.e., the lack of correlation between 
fluctuations far apart in space and/or  in time are taken for granted here as 
properties of the trajectory (note that correlations can be measured; a 
correlation function is calculated by sampling the states upon the trajec- 
tory; no mentally constructed ensemble is needed). They are not just 
properties of the stochastic models such as the kinetic Ising model dis- 
cussed previously. They are also properties observed in many-body systems 
in equilibrium with completely deterministic dynamics (as shown by numer- 
ical calculations). 

4.4. Relaxation Times in Metastable Systems 

As emphasized above, relaxation time plays a crucial role in determin- 
ing the entropy in our mechanical view. For many metastable systems, 
there is a clear separation of long and short time scales. For example, a 
spin-1 to spin-0 transition time in H 2 gas is much larger than the mean time 
between collisions. The latter is the relevant relaxation time. As long as the 
observation period is long compared to the shorter time scale and still short 
compared to the longer time scale, the measured entropy is independent of 
the length of the observation period. 

The more complicated cases are those with distributions of transition 
rates extending over a wide range. These cases appear often in glassy 
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materials. The phase space is divided by energy barriers of different 
heights. The time to climb over low barriers is short and that required over 
high barriers is long. Therefore the measured entropy is expected to depend 
on the length of the observation period. This dependence can be roughly 
estimated as follows. The time needed to climb over a barrier of height A is 
roughly 

t~,ro eA/r (4.1) 

where T 0 is a short time scale which is the relaxation time in the absence of 
the barrier. For t much larger than T 0 the barriers higher than 

Ac~ Tln( t / To) (4.2) 

are effectively formidable while there is ample time to climb barriers lower 
than A c. Therefore, we expect the measured entropy to vary only 
logarithmically with the length of the observation period. This time depen- 
dence is insensitive especially for small 7". 

5. COMPARISON TO THE THERMODYNAMIC FORMULA 

5.1. The Thermodynamic Formula 

We now turn to the discussion of entropy as defined by thermodynam- 
ics. The entropy difference between equilibrium states 1 and 2 is given by 

~2 dT OQ 
$2- SI ~'.~ T dT (5.1) 

where O Q/dT is the specific heat measured along a sequence of reversible 
processes connecting states 1 and 2. Latent heat terms must be added if 
there are first-order phase transitions in the sequence. This equation defines 
the entropy up to an additive constant. The additive constant can be 
defined by fixing the value of entropy at very high temperature in the gas 
phase according to the theory of dilute gas or by setting the entropy to zero 
at T = 0 (the third law of thermodynamics). Equation (5.1) is not only of 
experimental importance, it can also be used as the basis for determining 
entropy by numerical simulation. Since the specific heat is directly obtained 
from the time average of (energy fluctuation) squared of the model system 
of interest, entropy is thereby connected to the trajectories. However, this 
connection is very different from the coincidence counting discussed above. 
The entropy of a given equilibrium state cannot be measured directly from 
(5.1) by observing that state alone. One has to measure the specific heats of 
a sequence of other equilibrium states. Therefore, one needs to know the 
trajectories of equilibrium states other than the one of interest. This is not 
satisfactory from the mechanical view. 
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The sequence of processes connecting states 1 and 2 in (5.1) must be 
reversible. This means that if the temperature is varied through a complete 
cycle the system must return to its original equilibrium state. This condition 
is rather restrictive and not satisfied by many processes involving metasta- 
bility, which introduces irreversibility. From the mechanical view, irrevers- 
ibility means that a trajectory would end up in a different region in phase 
space after the temperature has been varied and returned to the original 
temperature. Very often macroscopic properties remain the same to a good 
approximation even when the trajectory ends up in a different region. For  
example, a glassy material can assume many molecular structures with the 
same macroscopic properties. These different structures correspond to 
different regions in phase space. Each region is surrounded by energy 
barriers. Within a reasonable observation time the trajectory is restricted in 
one of these regions. 

In spite of the difficulty of irreversibility one can of course still define 
the entropy by (5.1) with a definite choice of additive constant. In fact, this 
is the definition used for experimental determination and in many cases by 
numerical simulations. 

5.2. The Third Law of Thermodynamics 

This law says that the entropy should vanish in the limit of zero 
temperature. If we fix the additive constant in (5.1) using the theoretical 
high-temperature entropy, then with the experimentally measured specific 
heat, (5.1) would in many cases give a nonzero entropy for T approaching 
0, i.e., a violation of the third law (an extensive review can be found in a 
book by Wilks (4)). This nonzero entropy is often referred to as the "frozen 
entropy" which reflects the irreversibility due to metastable states as 
mentioned above. 

The qualitative interpretation of this frozen entropy is that it accounts 
for the regions which could be visited by the trajectory but actually not 
visited owing to the lack of time. 

The entropy as defined by the coincidence counting program automat- 
ically satisfies the third law. This is because it measures the region of phase 
space which the trajectory actually explores. It measures the amount of 
motion. As T approaches zero, all transition rates go to zero. This cessation 
of motion is, of course, the essence of the third law. Exception occurs if the 
system has highly degenerate ground states and no energy barriers separate 
them. In this case, transitions among these states can still occur at an 
appreciable rate for T approaching zero. 

At very high temperatures the entropy defined by coincidence count- 
ing agrees with (5.1). Therefore, there is a range of temperatures over which 
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there is disagreement whenever (5.1) violates the third law. The discrepancy 
can be defined as the frozen entropy at nonzero temperatures: 

Sf  . . . . .  = Sspec h e a t -  Scoinc (5.2) 

This quantity is a measure of "glassiness." It is also clear that if (5.2) is 
nonzero there will be some range of temperature over which 

TdScoin c :> d o (5.3) 

when the heat dQ is added, since by definition 

TdSspec heat = dQ (5.4) 

Equation (5.3) is a clear indication of irreversibility and so is a nonzero 

S frozen �9 

6. FURTHER DISCUSSION 

6.1. Entropy in Terms of Probabilities for All States 

Another well-known formula for the entropy is 

S = - ~ pslnps (6.1) 
s 

where Ps is the probability of finding the state s. At first sight, this formula 
may seem to be a way to calculate entropy from the trajectory since ps can 
be defined as the fraction of time spent in the state s. [After all, (1.1) and 
(2.13) can be regarded as special cases of (6.1).] However, (6.1) is useful 
only if the number of states is small enough so that the time spent in each 
state is sufficiently long to define Ps. This formula is useful in the theory of 
information and communication where the number of the symbols (cor- 
responding to states) is small and messages (corresponding to the trajecto- 
ries) are long. Each symbol appears many times in a message and p~ can be 
evaluated. In statistical mechanics, the number of states is large and the 
trajectories short. The trajectory does not have time to visit all the states. 
For as few as 12 spins, there are already about 4000 states. However, for 
systems which are very small, (6.1) is useful. (5) 

6.2. Nonequilibrium States 

The coincidence counting program, which is just an algorithm, can be 
applied to the trajectory of a nonequilibrium system, e.g., a system with a 
heat current and a temperature gradient. Such applications should provide 
new probes in studying nonequilibrium systems. However, there are fea- 
tures of nonequilibrium which are very different from those found in 
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equilibrium. The interpretation of the measured entropy would therefore be 
more complicated. An important feature is the strong low-frequency noise, 
the so-called 1If noise, which is believed to be a consequence of a steady 
current. Such noise implies long-time correlations of fluctuations. The 
entropy obtained from the coincidence counting would therefore depend on 
the length of the period of observation. The precise form of this depen- 
dence and its implications are yet to be worked out. 

6.3. Remarks  on the Relevant  S ize  

As we have emphasized in Section 2, the properties of a many-body 
system are well manifested by the behaviors of relatively small subsystems 
over a relatively short period of time. The extrapolation to larger systems 
and longer time can be done easily by combining the subsystems, which are 
approximately statistically independent. From this viewpoint, the tradi- 
tional approach of studying the phase space of the entire many-body 
system might not be the most illuminating. It would be hard to sort out the 
correlation effects from those effects which are merely results of statistical 
independence. It would be more efficient and illuminating to study the 
phase spaces of the subsystems. 

Of course, statistical properties should be understood within the frame- 
work of mechanics. Recently, there has been much interest and progress in 
the study of nonlinear dynamics. Systems with several degrees of freedom 
have been studied. One has begun to see chaotic behavior generated by 
deterministic equations of motion and recursion formulas. Statistical prop- 
erties of such systems are being measured. (5) The main purpose of these 
studies has been dynamics and not statistical mechanics. From the view- 
point of many-body physics, the systems studied have been too small. We 
expect that the study of systems of the size of the order of 15 spins (a phase 
space of an order of a few thousand states) is needed to gain insight on the 
interplay of correlations and statistical independence from a mechanical 
viewpoint. The crucial question is how nonlinear dynamics depend on the 
number of degrees of freedom in the range from 2 or 3 to 10 or 20. 
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